Named Entity Recognition (NER) is a crucial upstream task in Natural Language Processing (NLP). Traditional tag scheme approaches offer a single recognition that does not meet the needs of many downstream tasks such as coreference resolution. Meanwhile, Tag scheme approaches ignore the continuity of entities. Inspired by one-stage object detection models in computer vision (CV), this paper proposes a new no-tag scheme, the Whole-Aware Detection, which makes NER an object detection task. Meanwhile, this paper presents a novel model, Entity Candidate Network (ECNet), and a specific convolution network, Adaptive Context Convolution Network (ACCN), to fuse multi-scale contexts and encode entity information at each position. ECNet identifies the full span of a named entity and its type at each position based on Entity Loss. Furthermore, ECNet is regulable between the highest precision and the highest recall, while the tag scheme approaches are not. Experimental results on the CoNLL 2003 English dataset and the WNUT 2017 dataset show that ECNet outperforms other previous state-of-the-art methods.


翻译:在自然语言处理(NLP)中,命名实体识别(NER)是一项至关重要的上游任务。传统的标签办法方法提供了一种单一的承认,无法满足许多下游任务的需求,例如共同参照决议。与此同时,标记办法办法忽视了实体的连续性。在计算机视觉(CV)中一阶段天体探测模型的启发下,本文件提出了一个新的无标记办法,即 " 整体软件探测 " 方案,使NER成为目标探测任务。同时,本文件提出了一个新颖的模式,即实体候选网络(ECNet)和一个具体的组合网络(适应环境演变网络),即适应环境网络(ACCN),在每一个位置上结合多尺度的环境和编码实体信息。ECNet根据实体损失确定一个指定实体的完整范围及其在每一个位置的类型。此外,ECNet在最高精确度和最高回顾之间是可以相互参照的,而标记办法则不是。CONLL 2003年英国数据集和WNUT 2017数据集的实验结果显示,ECNet超越了其他以往的状态方法。

0
下载
关闭预览

相关内容

【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
5+阅读 · 2019年11月22日
Multi-Grained Named Entity Recognition
Arxiv
6+阅读 · 2019年6月20日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员