We present a method for producing unbiased parameter estimates and valid confidence intervals under the constraints of differential privacy, a formal framework for limiting individual information leakage from sensitive data. Prior work in this area is limited in that it is tailored to calculating confidence intervals for specific statistical procedures, such as mean estimation or simple linear regression. While other recent work can produce confidence intervals for more general sets of procedures, they either yield only approximately unbiased estimates, are designed for one-dimensional outputs, or assume significant user knowledge about the data-generating distribution. Our method induces distributions of mean and covariance estimates via the bag of little bootstraps (BLB) and uses them to privately estimate the parameters' sampling distribution via a generalized version of the CoinPress estimation algorithm. If the user can bound the parameters of the BLB-induced parameters and provide heavier-tailed families, the algorithm produces unbiased parameter estimates and valid confidence intervals which hold with arbitrarily high probability. These results hold in high dimensions and for any estimation procedure which behaves nicely under the bootstrap.
翻译:我们提出了一个在有区别的隐私限制下进行不偏倚的参数估计和有效信任间隔的方法,这是一个限制敏感数据泄漏个人信息的正式框架; 这一领域以前的工作是有限的,因为它是专门为具体统计程序,例如平均估计或简单的线性回归计算信任间隔而设计的; 虽然最近的其他工作可以为更一般的成套程序产生信任间隔,但它们要么只产生大致不偏倚的估计,要么为一维产出设计,或者假定用户对数据生成分布有相当程度的了解; 我们的方法通过小靴子袋(BLB) 进行平均和变量估计的分布,并利用这些方法通过CoinPress估计算法的通用版本私下估计参数的抽样分布; 如果用户能够约束BLB引起参数的参数并提供更精细的家属, 算法产生不偏颇的参数估计, 和任意高概率保持的有效信任间隔。 这些结果具有很高的尺寸, 用于在靴子下保持良好状态的任何估计程序。