Inferential models (IMs) are data-dependent, probability-like structures designed to quantify uncertainty about unknowns. As the name suggests, the focus has been on uncertainty quantification for inference, and on establishing a validity property that ensures the IM is reliable in a specific sense. The present paper develops an IM framework for decision problems and, in particular, investigates the decision-theoretic implications of the aforementioned validity property. I show that a valid IM's assessment of an action's quality, defined by a Choquet integral, will not be too optimistic compared to that of an oracle. This ensures that a valid IM tends not to favor actions that the oracle doesn't also favor, hence a valid IM is reliable for decision-making too. In a certain special class of structured statistical models, further connections can be made between the valid IM's favored actions and those favored by other more familiar frameworks, from which certain optimality conclusions can be drawn. An important step in these decision-theoretic developments is a characterization of the valid IM's credal set in terms of confidence distributions, which may be of independent interest.
翻译:推论模型(IMs)取决于数据, 其概率相似的结构旨在量化未知的不确定性。 名字表明, 重点是不确定性的推论量化, 以及建立有效性属性, 以确保IM具有特定意义上的可靠性。 本文为决策问题开发了一个IM 框架, 特别是调查上述有效性属性的决策理论影响。 我显示, 由 Choquet 集成的 Choquet 定义的 IM 对行动质量的有效评估不会过于乐观, 与甲骨文相比。 这确保了有效的IM 倾向于不支持甲骨文也不喜欢的行动, 因而有效的IM 也可靠于决策。 在某些特殊的结构化统计模型类别中, 可以将有效的IM 偏好的行动与其他更熟悉的框架所偏好的行动进一步联系起来, 从中可以得出某些最佳性结论。 这些决定- 理论性发展的一个重要步骤是对有效的IM 的直截了信任分布的描述, 这可能是独立的利益。