In this paper, we develop a robust, efficient visual SLAM system that utilizes spatial inhibition of low threshold, baseline lines, and closed-loop keyframe features. Using ORB-SLAM2, our methods include stereo matching, frame tracking, local bundle adjustment, and line and point global bundle adjustment. In particular, we contribute re-projection in line with the baseline. Fusing lines in the system consume colossal time, and we reduce the time from distributing points to utilizing spatial suppression of feature points. In addition, low threshold key points can be more effective in dealing with low textures. In order to overcome Tracking keyframe redundant problems, an efficient and robust closed-loop tracking key frame is proposed. The proposed SLAM has been extensively tested in KITTI and EuRoC datasets, demonstrating that the proposed system is superior to state-of-the-art methods in various scenarios.
翻译:在本文中,我们开发了一个强大、高效的视觉 SLAM 系统,该系统利用低门槛、基线线和闭环键框架的空间抑制功能。使用ORB-SLAM2,我们的方法包括立体比对、框架跟踪、本地捆绑调整、以及线和点全球捆绑调整。特别是,我们根据基线进行重新预测。系统中的线条耗时巨大,我们从分配点到利用地貌点的空间压制的时间也减少了。此外,低门槛关键点在处理低质方面可能更有效。为了克服关键框架冗余问题,我们提出了一个高效和稳健的闭环跟踪关键框架。拟议的SLAM已经在KITTI和EuRoC数据集中进行了广泛测试,表明拟议的系统在各种情景中优于最先进的方法。