We present a numerical approximation of the solutions of the Euler equations with a gravitational source term. On the basis of a Suliciu type relaxation model with two relaxation speeds, we construct an approximate Riemann solver, which is used in a first order Godunov-type finite volume scheme. This scheme can preserve both stationary solutions and the low Mach limit to the corresponding incompressible equations. In addition, we prove that our scheme preserves the positivity of density and internal energy, that it is entropy satisfying and also guarantees not to give rise to numerical checkerboard modes in the incompressible limit. Later we give an extension to second order that preserves these properties. Finally, the theoretical properties are investigated in numerical experiments.
翻译:我们以引力源术语展示了Euler方程式解决方案的数值近似值。 我们以两个放松速度的苏利西乌型放松模型为基础, 构建了一个近似Riemann 的解答器, 用于第一个顺序的Godunov 型有限体积计划。 这个计划可以将固定式解决方案和低Mach 限值保留在相应的不可压缩方程式中。 此外, 我们证明我们的方案保留了密度和内部能量的假设性, 它满足了, 并且保证不会在不可压缩限度内产生数字检查板模式。 稍后我们延长了保存这些属性的第二个顺序。 最后, 在数字实验中, 对理论属性进行了调查 。