Conversational explainable artificial intelligence (ConvXAI) systems based on large language models (LLMs) have garnered significant interest from the research community in natural language processing (NLP) and human-computer interaction (HCI). Such systems can provide answers to user questions about explanations, have the potential to enhance users' comprehension and offer more information about the decision-making and generation processes of LLMs. Currently available ConvXAI systems are based on intent recognition rather than free chat. Thus, reliably grasping users' intentions in ConvXAI systems still presents a challenge, because there is a broad range of XAI methods to map requests onto and each of them can have multiple slots to take care of. In order to bridge this gap, we present CoXQL, the first dataset for user intent recognition in ConvXAI, covering 31 intents, seven of which require filling additional slots. Subsequently, we enhance an existing parsing approach by incorporating template validations, and conduct an evaluation of several LLMs on CoXQL using different parsing strategies. We conclude that the improved parsing approach (MP+) surpasses the performance of previous approaches. We also discover that intents with multiple slots remain highly challenging for LLMs.
翻译:暂无翻译