Imbalance in covariate distributions leads to biased estimates of causal effects. Weighting methods attempt to correct this imbalance but rely on specifying models for the treatment assignment mechanism, which is unknown in observational studies. This leaves researchers to choose the proper weighting method and the appropriate covariate functions for these models without knowing the correct combination to achieve distributional balance. In response to these difficulties, we propose a nonparametric generalization of several other weighting schemes found in the literature: Causal Optimal Transport. This new method directly targets distributional balance by minimizing optimal transport distances between treatment and control groups or, more generally, between any source and target population. Our approach is semiparametrically efficient and model-free but can also incorporate moments or any other important functions of covariates that a researcher desires to balance. Moreover, our method can provide nonparametric estimate the conditional mean outcome function and we give rates for the convergence of this estimator. Moreover, we show how this method can provide nonparametric imputations of the missing potential outcomes and give rates of convergence for this estimator. We find that Causal Optimal Transport outperforms competitor methods when both the propensity score and outcome models are misspecified, indicating it is a robust alternative to common weighting methods. Finally, we demonstrate the utility of our method in an external control trial examining the effect of misoprostol versus oxytocin for the treatment of post-partum hemorrhage.


翻译:孔径分布的不平衡导致对因果关系的偏差估计。 加权方法试图纠正这种不平衡,但依靠指定治疗分配机制的模式,这是观察研究中未知的。 这使得研究人员可以在不知道正确组合的情况下选择这些模型的适当加权方法和适当的共差功能,而不知道实现分配平衡的正确组合。 针对这些困难,我们建议对文献中的其他若干加权办法进行非对称的概括化: causal Optimal Transport。 这一新方法通过尽量减少治疗和控制组之间或更一般地说来任何源和目标人群之间的最佳运输距离,直接针对分配平衡。 我们的方法是半对称有效和无型的处理机制。 我们的方法可以包含研究者想要平衡的共变体的瞬间或任何其他重要功能。 此外,我们的方法可以提供非对等值估计条件平均结果的计算率,我们为这个估计器的合并率提供了一种非对称性的潜在结果,并为这个估量器提供了非对称的处理率。 我们发现,在选择的顶端和直径分析结果的方法中, Causor Obrial Oprial train 方法是一种常态分析结果。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
When Optimal Transport Meets Information Geometry
Arxiv
0+阅读 · 2022年6月29日
Arxiv
0+阅读 · 2022年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员