Recent years have shown a growing interest in using haptic shared control (HSC) in teleoperated systems. In HSC, the application of virtual guiding forces decreases the user's control effort and improves execution time in various tasks, presenting a good alternative in comparison with direct teleoperation. HSC, despite demonstrating good performance, opens a new gap: how to design the guiding forces. For this reason, the challenge lies in developing controllers to provide the optimal guiding forces for the tasks that are being performed. This work addresses this challenge by designing a controller based on the deep deterministic policy gradient (DDPG) algorithm to provide the assistance, and a convolutional neural network (CNN) to perform the task detection, called TAHSC (Task Agnostic Haptic Shared Controller). The agent learns to minimize the time it takes the human to execute the desired task, while simultaneously minimizing their resistance to the provided feedback. This resistance thus provides the learning algorithm with information about which direction the human is trying to follow, in this case, the pick-and-place task. Diverse results demonstrate the successful application of the proposed approach by learning custom policies for each user who was asked to test the system. It exhibits stable convergence and aids the user in completing the task with the least amount of time possible.


翻译:近些年来,人们越来越有兴趣在电信操作系统中使用偶然的共享控制(HSC),在HSC中,虚拟指导力量的应用减少了用户的控制努力,改进了各种任务的执行时间,与直接的远程操作相比,这提供了一个很好的替代方法。HSC尽管表现良好,但还是开辟了新的差距:如何设计指导力量。为此,挑战在于如何开发控制器,为正在执行任务提供最佳的指导力量。这项工作通过设计一个基于深度确定性政策梯度(DPG)算法的控制器来应对这一挑战,以提供协助,并建立一个革命神经网络来进行任务探测,称为TAHASSC(TASK Agnostic Haptic 共享控制器),该控制器学会最大限度地减少人执行预期任务所需的时间,同时尽量减少他们对所提供的反馈的阻力。因此,这种阻力为学习关于人类努力遵循的方向的信息提供了算法,在此情况下,选择和定位任务的任务。变换的结果表明,通过为每个用户学习标准化政策,成功地应用拟议的方法,在最稳定的时间上,每个用户都要求测试最不稳定的任务测试。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2018年12月3日
Arxiv
3+阅读 · 2018年10月5日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
5+阅读 · 2018年6月5日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员