Relativistic magnetic reconnection is a non-ideal plasma process that is a source of non-thermal particle acceleration in many high-energy astrophysical systems. Particle-in-cell (PIC) methods are commonly used for simulating reconnection from first principles. While much progress has been made in understanding the physics of reconnection, especially in 2D, the adoption of advanced algorithms and numerical techniques for efficiently modeling such systems has been limited. With the GPU-accelerated PIC code WarpX, we explore the accuracy and potential performance benefits of two advanced Maxwell solver algorithms: a non-standard finite difference scheme (CKC) and an ultrahigh-order pseudo-spectral method (PSATD). We find that for the relativistic reconnection problem, CKC and PSATD qualitatively and quantitatively match the standard Yee-grid finite-difference method. CKC and PSATD both admit a time step that is 40% longer than Yee, resulting in a ~40% faster time to solution for CKC, but no performance benefit for PSATD when using a current deposition scheme that satisfies Gauss's law. Relaxing this constraint maintains accuracy and yields a 30% speedup. Unlike Yee and CKC, PSATD is numerically stable at any time step, allowing for a larger time step than with the finite-difference methods. We found that increasing the time step 2.4-3 times over the standard Yee step still yields accurate results, but only translates to modest performance improvements over CKC due to the current deposition scheme used with PSATD. Further optimization of this scheme will likely improve the effective performance of PSATD.
翻译:相对论磁重联是很多高能天体系统中不可避免的非理想等离子体过程,也是许多系统中非热粒子加速的源头。粒子-电池方法一般被用来从第一原理模拟重联。尽管在理解物理过程方面已经取得了很多进展,特别是在二维上,但是采用先进的算法和数值技巧有效地模拟这样的系统的应用仍然很有限。我们利用 GPU 加速的粒子-电池程序 WarpX,探究了两种先进的 Maxwell 解算器算法(一个是非标准有限差分方案,另一个是超高阶伪谱方法)的精度和潜在的性能优势。我们发现,在相对论重联问题中,CKC 和 PSATD 都能够定性和定量匹配标准的 Yee 网格有限差分方法。CKC 和 PSATD 的时间步长都能够比 Yee 长 40%,从而使得 CKC 的解决时间快了约 40%,但是当使用满足高斯定律的电流沉积方案时,对于 PSATD 并没有带来性能上的好处。松弛这个约束条件能够保持准确性并且获得 30% 的加速。与 Yee 和 CKC 不同的是,PSATD 在任何时间步都是数值稳定的,允许采用比有限差分方法更大的时间步长。我们发现,将时间步长增加 2.4-3 倍仍然能够保持准确的结果,但仅仅相对于 CKC 轻微地提高了性能,这是由于 PSATD 采用的电流沉积方案。进一步优化该方案很可能会提高 PSATD 的有效性能。