We consider a synchronous process of particles moving on the vertices of a graph $G$, introduced by Cooper, McDowell, Radzik, Rivera and Shiraga (2018). Initially,~$M$ particles are placed on a vertex of $G$. At the beginning of each time step, for every vertex inhabited by at least two particles, each of these particles moves independently to a neighbour chosen uniformly at random. The process ends at the first step when no vertex is inhabited by more than one particle. Cooper et al. showed that when the underlying graph is the complete graph on~$n$ vertices, then there is a phase transition when the number of particles $M = n/2$. They showed that if $M<(1-\varepsilon)n/2$ for some fixed $\varepsilon>0$, then the process finishes in a logarithmic number of steps, while if $M>(1+\varepsilon)n/2$, an exponential number of steps are required with high probability. In this paper we provide a thorough analysis of the dispersion time around criticality, where $\varepsilon = o(1)$, and describe the fine details of the transition between logarithmic and exponential time. As a consequence of our results we establish, for example, that the dispersion time is in probability and in expectation $\Theta(n^{1/2})$ when $|\varepsilon| = O(n^{-1/2})$, and provide qualitative bounds for its tail behavior.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员