This article derives closed-form parametric formulas for the Minkowski sums of convex bodies in d-dimensional Euclidean space with boundaries that are smooth and have all positive sectional curvatures at every point. Under these conditions, there is a unique relationship between the position of each boundary point and the surface normal. The main results are presented as two theorems. The first theorem directly parameterizes the Minkowski sums using the unit normal vector at each surface point. Although simple to express mathematically, such a parameterization is not always practical to obtain computationally. Therefore, the second theorem derives a more useful parametric closed-form expression using the gradient that is not normalized. In the special case of two ellipsoids, the proposed expressions are identical to those derived previously using geometric interpretations. In order to examine the results, numerical validations and comparisons of the Minkowski sums between two superquadric bodies are conducted. Applications to generate configuration space obstacles in motion planning problems and to improve optimization-based collision detection algorithms are introduced and demonstrated.
翻译:文章为二维欧几里德空间的Minkowski convex 体积积生成了封闭式参数公式,其边界平滑,每个点都有正的部位曲线。 在这样的条件下,每个边界点的位置与表面正常度之间有着独特的关系。 主要结果以两个理论形式呈现。 第一个理论在每一表面点使用单位正向矢量直接参数将Minkowski 体积参数化。 虽然数学上简单易言,但这种参数化并非总能以计算方式获得。 因此,第二个理论用非正常的梯度产生一个更有用的参数封闭式表达式。 在两个子线性的特殊情况下,提议的表达式与以前使用几何解释得出的表达式相同。 为了检查结果,对两个超赤道体之间的Minkowski 数校准和比较进行了数字验证和比较。 引入并演示了用于在运动规划问题中制造空间配置障碍和改进基于优化碰撞探测的算法的应用。