This paper proposes the asymmetric linear double autoregression, which jointly models the conditional mean and conditional heteroscedasticity characterized by asymmetric effects. A sufficient condition is established for the existence of a strictly stationary solution. With a quasi-maximum likelihood estimation (QMLE) procedure introduced, a Bayesian information criterion (BIC) and its modified version are proposed for model selection. To detect asymmetric effects in the volatility, the Wald, Lagrange multiplier and quasi-likelihood ratio test statistics are put forward, and their limiting distributions are established under both null and local alternative hypotheses. Moreover, a mixed portmanteau test is constructed to check the adequacy of the fitted model. All asymptotic properties of inference tools including QMLE, BICs, asymmetric tests and the mixed portmanteau test, are established without any moment condition on the data process, which makes the new model and its inference tools applicable for heavy-tailed data. Simulation studies indicate that the proposed methods perform well in finite samples, and an empirical application to S\&P500 Index illustrates the usefulness of the new model.


翻译:本文提出不对称线性双向反向反向反应,共同模拟以不对称效应为特征的有条件平均和有条件的偏向性;为严格固定的解决方案的存在确定了充分的条件;采用了准最大可能性估计(QMLE)程序,提出了巴伊西亚信息标准(BIC)及其修改版本,供模式选择;为检测波动中的不对称影响,提出了瓦尔德、拉格朗特乘数和准类似比测试统计数据,并在无效和当地替代假设下确定了限制分布;此外,还构建了一个混合港口门窗测试,以检查装配模型是否合适;所有推断工具,包括QMLE、BICs、不对称测试和混合港口门廊测试,均不附带任何数据过程的条件,使新模型及其推断工具适用于重成型数据;模拟研究表明,拟议方法在限定样品中运作良好,S ⁇ P500指数的经验应用说明了新模型的效用。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
多样性算力技术愿景白皮书
专知会员服务
81+阅读 · 2021年4月29日
专知会员服务
49+阅读 · 2021年3月24日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
使用 Dask 在 Python 中进行并行计算 | Linux 中国
Linux中国
4+阅读 · 2019年4月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
多样性算力技术愿景白皮书
专知会员服务
81+阅读 · 2021年4月29日
专知会员服务
49+阅读 · 2021年3月24日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
使用 Dask 在 Python 中进行并行计算 | Linux 中国
Linux中国
4+阅读 · 2019年4月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员