Graph Contrastive Learning (GCL) has been an emerging solution for graph self-supervised learning. Existing GCL methods always adopt the binary-contrastive setting: making binary decisions (positive/negative pairs) on the generated views, pulling positive (similar) pairs close and pushing negative (dissimilar) pairs far away. Despite promising performances, two critical issues arise: (i) the validity of view construction cannot be guaranteed: graph perturbation may produce invalid views against semantics and intrinsic topology of graph data; (ii) the binary-contrastive setting is unreliable: for non-euclidean graph data, positive (similar) pairs and negative (dissimilar) pairs are very difficult to be decided. The two problems further raise the research question: Is the binary-contrastive setting really necessary for graph contrastive learning? In this paper, we investigate this research question and introduce a novel GCL paradigm, namely Graph Soft-Contrastive Learning (GSCL), which can conduct graph self-supervise learning via neighborhood ranking without relying on the binary-contrastive setting. Specifically, GSCL is built upon the basic assumption of graph homophily that connected neighbors are more similar than far-distant nodes. Then, under the GSCL paradigm, we develop pair-wise and list-wise Gated Ranking infoNCE Loss functions to preserve the relative ranking relationship in the neighborhood. Moreover, as the neighborhood size exponentially expands with more hops considered, we propose neighborhood sampling strategies to improve learning efficiency. Extensive experimental results show that GSCL can achieve competitive or even superior performance compared with current state-of-the-art GCL methods. We expect our work can stimulate more research efforts to jump out of the traditional binary-contrastive setting and conform to the inherent characteristics and properties of graphs.
翻译:图表对比性学习(GCL)是图形自我监督学习的新兴解决方案。 现有的 GCL 方法总是采用二进制调制设置: 在生成的视图上做出二进制决定( 正对/负对), 将正对( 相似的) 配对拉近, 将负对( 不同) 配对推到很远的地方 。 尽管表现很有希望, 仍然产生了两个关键问题 :( 一) 视图的构造的有效性无法保证 : 图形扰动可能会产生无效的观点, 与图形数据自监管的语义和内在传统表层学( GSCL ) 。 二进制的二进制调设置不可靠: 对于非双进制的图表图形图形数据, 积极的( 相似的)配对和负式( 不同的) 配对非常难决定。 两个问题进一步提出了研究问题 : 两进制的调调设置是否真正必要? 在图形对比性学习中, 我们研究这个研究的问题, 引入了一个新的 GCL 模式,, 即SGSoft- contra Styal Stal lening (GS- reside) resul 学习 学习 学习 (甚至 ), 和我们 的 的自我分析 的自我超越的排序的排序的排序的排序的计算,, 我们的排序的排序的排序的计算,, 可以在进行更深级的计算, 进行更深级的计算。