The identification of vulnerabilities is an important element in the software development life cycle to ensure the security of software. While vulnerability identification based on the source code is a well studied field, the identification of vulnerabilities on basis of a binary executable without the corresponding source code is more challenging. Recent research [1] has shown, how such detection can be achieved by deep learning methods. However, that particular approach is limited to the identification of only 4 types of vulnerabilities. Subsequently, we analyze to what extent we could cover the identification of a larger variety of vulnerabilities. Therefore, a supervised deep learning approach using recurrent neural networks for the application of vulnerability detection based on binary executables is used. The underlying basis is a dataset with 50,651 samples of vulnerable code in the form of a standardized LLVM Intermediate Representation. The vectorised features of a Word2Vec model are used to train different variations of three basic architectures of recurrent neural networks (GRU, LSTM, SRNN). A binary classification was established for detecting the presence of an arbitrary vulnerability, and a multi-class model was trained for the identification of the exact vulnerability, which achieved an out-of-sample accuracy of 88% and 77%, respectively. Differences in the detection of different vulnerabilities were also observed, with non-vulnerable samples being detected with a particularly high precision of over 98%. Thus, the methodology presented allows an accurate detection of 23 (compared to 4 [1]) vulnerabilities.


翻译:查明脆弱性是软件开发生命周期中确保软件安全的一个重要要素。根据源代码识别脆弱性是确保软件安全的一个重要要素。虽然根据源代码识别脆弱性是一个研究周密的领域,但根据一个二进制执行程序,而没有相应的源代码,查明脆弱性则更具挑战性。最近的研究[1]显示,如何通过深层学习方法发现这种检测。然而,这一特定方法仅限于仅确定四种类型的脆弱性。随后,我们分析了我们在多大程度上可以涵盖识别更广泛的脆弱性。因此,采用了一种监督的深层次学习方法,利用经常性神经网络进行监管的神经网络,应用基于二进制执行软件的弱点检测。基础是一套包含50,651个脆弱代码样本的数据集,其形式为标准化LLLLVM中间代表系统。WO2Vec模型的矢量特性被用于对三种经常性神经网络基本结构(GRU、LSTM、SRNN)进行不同的变换。我们提出了一种二进式分类,用于检测任意脆弱性的存在,并用多级模型来识别准确的脆弱性,其精确度为50,651样本以标准形式显示的脆弱程度为78%以上。还观察到的精确度。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
20+阅读 · 2020年6月8日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
26+阅读 · 2020年2月21日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关VIP内容
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员