We propose a novel framework for target speech extraction based on semantic information, called ConceptBeam. Target speech extraction means extracting the speech of a target speaker in a mixture. Typical approaches have been exploiting properties of audio signals, such as harmonic structure and direction of arrival. In contrast, ConceptBeam tackles the problem with semantic clues. Specifically, we extract the speech of speakers speaking about a concept, i.e., a topic of interest, using a concept specifier such as an image or speech. Solving this novel problem would open the door to innovative applications such as listening systems that focus on a particular topic discussed in a conversation. Unlike keywords, concepts are abstract notions, making it challenging to directly represent a target concept. In our scheme, a concept is encoded as a semantic embedding by mapping the concept specifier to a shared embedding space. This modality-independent space can be built by means of deep metric learning using paired data consisting of images and their spoken captions. We use it to bridge modality-dependent information, i.e., the speech segments in the mixture, and the specified, modality-independent concept. As a proof of our scheme, we performed experiments using a set of images associated with spoken captions. That is, we generated speech mixtures from these spoken captions and used the images or speech signals as the concept specifiers. We then extracted the target speech using the acoustic characteristics of the identified segments. We compare ConceptBeam with two methods: one based on keywords obtained from recognition systems and another based on sound source separation. We show that ConceptBeam clearly outperforms the baseline methods and effectively extracts speech based on the semantic representation.


翻译:我们提出了一个基于语义信息的目标语音提取的新框架,称为“概念Beam ” 。 目标语言提取意味着在混合中提取目标演讲者的演讲。 典型的方法是利用音频信号的特性, 如调和结构和到达方向。 相反, 概念Beam 以语义线索解决问题。 具体地说, 我们用图像或语言等概念标语来表达一个概念。 解决这个新问题将打开创新应用的大门, 如以谈话中讨论的特定主题为焦点的监听系统。 与关键词不同, 概念是抽象的概念, 直接代表目标概念的概念。 相反, 概念是用语义结构的标语义嵌入到共同的嵌入空间。 这个模式依赖空间可以通过使用由图像或语言描述组成的配对数据来进行深度衡量。 我们用它来连接基于模式的信息, 也就是说, 语言组合中的语系是抽象概念, 以我们所使用的语言缩略图模式为直线路路, 以我们所使用的语言缩图的缩略图模型为直径, 。 我们使用这些语言缩略图的缩略图的缩图的缩图是用来显示我们所使用的缩略图的缩图的缩图, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
10+阅读 · 2018年4月19日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员