The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing. Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders. In general, not all the observed pre-treatment variables are confounders that refer to the common causes of the treatment and the outcome, some variables only contribute to the treatment and some only contribute to the outcome. Balancing those non-confounders, including instrumental variables and adjustment variables, would generate additional bias for treatment effect estimation. By modeling the different causal relations among observed pre-treatment variables, treatment and outcome, we propose a synergistic learning framework to 1) identify confounders by learning decomposed representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference. Empirical results on synthetic and real-world datasets demonstrate that the proposed method can precisely decompose confounders and achieve a more precise estimation of treatment effect than baselines.


翻译:从观测数据中得出的治疗效果估计基本问题是混淆的识别和平衡。以前的方法大多通过将所有观察到的预处理变数作为折中器来实现平衡,忽视进一步识别折中器和非折中器。一般而言,并非所有观察到的预处理变数都是指治疗的共同原因和结果的折中器,有些变数只有助于治疗,有些变数只有助于结果。平衡这些非折中器,包括辅助变量和调整变量,将产生额外的治疗效果估计偏差。通过模拟所观察到的预处理变数、治疗和结果之间的不同因果关系,我们建议了一个协同学习框架,以便1)通过学习混结器和非折中器的分解表态来识别混结器,2)与样本再加权技术的平衡器,3)同时,通过反事实推断来估计观察研究的治疗效果。合成和真实世界数据集的预测结果表明,拟议的方法可以精确地解分解叠器,并比基线更精确地估计治疗效果。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
4+阅读 · 2021年10月19日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
7+阅读 · 2020年8月7日
Inferred successor maps for better transfer learning
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员