We combine a systematic approach for deriving general a posteriori error estimates for convex minimization problems based on convex duality relations with a recently derived generalized Marini formula. The a posteriori error estimates are essentially constant-free and apply to a large class of variational problems including the $p$-Dirichlet problem, as well as degenerate minimization, obstacle and image de-noising problems. In addition, these a posteriori error estimates are based on a comparison to a given non-conforming finite element solution. For the $p$-Dirichlet problem, these a posteriori error bounds are equivalent to residual type a posteriori error bounds and, hence, reliable and efficient.
翻译:我们结合了一种系统的方法,对基于细细的双重关系得出的细细的最小化问题的事后误差估计与最近得出的普遍马里尼公式相结合。 事后误差估计基本是不变的,适用于一大批变异问题,包括美元多利特问题,以及堕落的最小化、障碍和图像去除问题。此外,这些事后误差估计还基于与特定不兼容的有限要素解决方案的比较。 对于美元多利特问题,这些事后误差界限相当于后差误差的剩余类型,因此是可靠和高效的。