We study the task of list-decodable linear regression using batches. A batch is called clean if it consists of i.i.d. samples from an unknown linear regression distribution. For a parameter $\alpha \in (0, 1/2)$, an unknown $\alpha$-fraction of the batches are clean and no assumptions are made on the remaining ones. The goal is to output a small list of vectors at least one of which is close to the true regressor vector in $\ell_2$-norm. [DJKS23] gave an efficient algorithm, under natural distributional assumptions, with the following guarantee. Assuming that the batch size $n$ satisfies $n \geq \tilde{\Omega}(\alpha^{-1})$ and the number of batches is $m = \mathrm{poly}(d, n, 1/\alpha)$, their algorithm runs in polynomial time and outputs a list of $O(1/\alpha^2)$ vectors at least one of which is $\tilde{O}(\alpha^{-1/2}/\sqrt{n})$ close to the target regressor. Here we design a new polynomial time algorithm with significantly stronger guarantees under the assumption that the low-degree moments of the covariates distribution are Sum-of-Squares (SoS) certifiably bounded. Specifically, for any constant $\delta>0$, as long as the batch size is $n \geq \Omega_{\delta}(\alpha^{-\delta})$ and the degree-$\Theta(1/\delta)$ moments of the covariates are SoS certifiably bounded, our algorithm uses $m = \mathrm{poly}((dn)^{1/\delta}, 1/\alpha)$ batches, runs in polynomial-time, and outputs an $O(1/\alpha)$-sized list of vectors one of which is $O(\alpha^{-\delta/2}/\sqrt{n})$ close to the target. That is, our algorithm achieves substantially smaller minimum batch size and final error, while achieving the optimal list size. Our approach uses higher-order moment information by carefully combining the SoS paradigm interleaved with an iterative method and a novel list pruning procedure. In the process, we give an SoS proof of the Marcinkiewicz-Zygmund inequality that may be of broader applicability.
翻译:暂无翻译