This study introduces CCNETS (Causal Learning with Causal Cooperative Nets), a novel generative model-based classifier designed to tackle the challenge of generating data for imbalanced datasets in pattern recognition. CCNETS is uniquely crafted to emulate brain-like information processing and comprises three main components: Explainer, Producer, and Reasoner. Each component is designed to mimic specific brain functions, which aids in generating high-quality datasets and enhancing classification performance. The model is particularly focused on addressing the common and significant challenge of handling imbalanced datasets in machine learning. CCNETS's effectiveness is demonstrated through its application to a "fraud dataset," where normal transactions significantly outnumber fraudulent ones (99.83% vs. 0.17%). Traditional methods often struggle with such imbalances, leading to skewed performance metrics. However, CCNETS exhibits superior classification ability, as evidenced by its performance metrics. Specifically, it achieved an F1-score of 0.7992, outperforming traditional models like Autoencoders and Multi-layer Perceptrons (MLP) in the same context. This performance indicates CCNETS's proficiency in more accurately distinguishing between normal and fraudulent patterns. The innovative structure of CCNETS enhances the coherence between generative and classification models, helping to overcome the limitations of pattern recognition that rely solely on generative models. This study emphasizes CCNETS's potential in diverse applications, especially where quality data generation and pattern recognition are key. It proves effective in machine learning, particularly for imbalanced datasets. CCNETS overcomes current challenges in these datasets and advances machine learning with brain-inspired approaches.


翻译:暂无翻译

0
下载
关闭预览

相关内容

模式识别是一个成熟的、令人兴奋的、快速发展的领域,它支撑着计算机视觉、图像处理、文本和文档分析以及神经网络等相关领域的发展。它与机器学习非常相似,在生物识别、生物信息学、多媒体数据分析和最新的数据科学等新兴领域也有应用。模式识别(Pattern Recognition)杂志成立于大约50年前,当时该领域刚刚出现计算机科学的早期。在这期间,它已大大扩大。只要这些论文的背景得到了清晰的解释并以模式识别文献为基础,该杂志接受那些对模式识别理论、方法和在任何领域的应用做出原创贡献的论文。 官网地址:http://dblp.uni-trier.de/db/conf/par/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 3月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员