In this work, we propose a novel image reconstruction framework that directly learns a neural implicit representation in k-space for ECG-triggered non-Cartesian Cardiac Magnetic Resonance Imaging (CMR). While existing methods bin acquired data from neighboring time points to reconstruct one phase of the cardiac motion, our framework allows for a continuous, binning-free, and subject-specific k-space representation.We assign a unique coordinate that consists of time, coil index, and frequency domain location to each sampled k-space point. We then learn the subject-specific mapping from these unique coordinates to k-space intensities using a multi-layer perceptron with frequency domain regularization. During inference, we obtain a complete k-space for Cartesian coordinates and an arbitrary temporal resolution. A simple inverse Fourier transform recovers the image, eliminating the need for density compensation and costly non-uniform Fourier transforms for non-Cartesian data. This novel imaging framework was tested on 42 radially sampled datasets from 6 subjects. The proposed method outperforms other techniques qualitatively and quantitatively using data from four and one heartbeat(s) and 30 cardiac phases. Our results for one heartbeat reconstruction of 50 cardiac phases show improved artifact removal and spatio-temporal resolution, leveraging the potential for real-time CMR.
翻译:在这项工作中,我们提议了一个新颖的图像重建框架,直接在ECG触发的非卡提亚心肌磁共振成像(CMR)的 k空间中学习神经隐含的表示。虽然现有方法箱从邻近时间点获取数据以重建心脏运动的一个阶段,但我们的框架允许连续、无硬盘和特定主题的K-空间表示。我们为每个取样的 k-空间点指定了一个独特的协调点,包括时间、卷轴索引和频率域位置。然后我们用具有频率域规范的多层透视器从这些独特的坐标到 k-空间密度的绘图。在推断期间,我们获得了一个完整的卡提亚坐标点和任意时间分辨率的 K-空间数据。一个简单的四面图则恢复了图像,消除了对密度补偿的需求,并且对非卡提亚数据进行了昂贵的非单形四面域变换。这个新图像框架在从6个主题的42个抽样数据集中进行了测试。拟议的方法超越了从一个心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心脏-心平分分解分分分分分分解分分解的每一个阶段的每一个和一个阶段的再研究阶段的再分析一个阶段的18阶段的再分析、一个和一个阶段的再演算。