We present a federated, asynchronous, memory-limited algorithm for online task scheduling across large-scale networks of hundreds of workers. This is achieved through recent advancements in federated edge computing that unlocks the ability to incrementally compute local model updates within each node separately. This local model is then used along with incoming data to generate a rejection signal which reflects the overall node responsiveness and if it is able to accept an incoming task without resulting in degraded performance. Through this innovation, we allow each node to execute scheduling decisions on whether to accept an incoming job independently based on the workload seen thus far. Further, using the aggregate of the iterates a global view of the system can be constructed, as needed, and could be used to produce a holistic perspective of the system. We complement our findings, by an empirical evaluation on a large-scale real-world dataset of traces from a virtualized production data center that shows, while using limited memory, that our algorithm exhibits state-of-the-art performance. Concretely, it is able to predict changes in the system responsiveness ahead of time based on the industry-standard CPU-Ready metric and, in turn, can lead to better scheduling decisions and overall utilization of the available resources. Finally, in the absence of communication latency, it exhibits attractive horizontal scalability.


翻译:我们提出一个由数百名工人组成的大型网络在线任务日程安排的联盟式、无节奏的有限记忆算法,这是通过最近联结边缘计算的进步实现的,这种计算使每个节点能够分别逐步计算本地模型更新。然后,这个本地模型与输入的数据一起使用,产生拒绝信号,反映总体节点反应,如果它能够接受一项即将到来的任务而不会导致业绩下降。通过这一创新,我们允许每个节点执行关于是否根据迄今所看到的工作量独立接受即将到来的工作的时间安排决定。此外,利用该节点的汇总,可以在必要时构建系统的全球视角,并可用于生成系统的整体视角。我们通过对一个虚拟化生产数据中心的大规模真实世界数据集进行实证评估来补充我们的调查结果,该数据库在使用有限的记忆的同时显示,我们的算法展示了最新业绩。具体地说,它能够根据工业标准CPU-Reeal对系统所作全球视角的全局性观点来预测系统反应的提前变化。最后,在可支配性的总体度、可支配性度、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性全面性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性能性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性、可支配性能、可支配性、可

0
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
50+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Federated Learning with Fair Averaging
Arxiv
1+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月15日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员