This paper studies the user activity detection and channel estimation problem in a temporally-correlated massive access system where a very large number of users communicate with a base station sporadically and each user once activated can transmit with a large probability over multiple consecutive frames. We formulate the problem as a dynamic compressed sensing (DCS) problem to exploit both the sparsity and the temporal correlation of user activity. By leveraging the hybrid generalized approximate message passing (HyGAMP) framework, we design a computationally efficient algorithm, HyGAMP-DCS, to solve this problem. In contrast to only exploit the historical estimations, the proposed algorithm performs bidirectional message passing between the neighboring frames for activity likelihood update to fully exploit the temporally-correlated user activities. Furthermore, we develop an expectation maximization HyGAMP-DCS (EM-HyGAMP-DCS) algorithm to adaptively learn the hyperparameters during the estimation procedure when the system statistics are unknown. In particular, we propose to utilize the analysis tool of state evolution to find the appropriate hyperparameter initialization of EM-HyGAMP-DCS. Simulation results demonstrate that our proposed algorithms can significantly improve the user activity detection accuracy and reduce the channel estimation error.


翻译:本文研究与时间有关的大规模接入系统中的用户活动探测和频道估计问题,在该系统中,大量用户与基地站进行零星通信,每个用户一旦激活,就可以在多个连续框架上以极有可能的方式传送。我们将问题发展成动态压缩遥感(DCS)问题,以利用用户活动的宽度和时间相关性。我们利用混合的通用信息传递(HyGAMP)框架,设计了一个计算高效算法(HyGAMP-DCS),以解决这一问题。与仅仅利用历史估计,相反,拟议的算法在活动可能性更新的邻近框架之间传递双向信息,以充分利用与时间有关的用户活动。此外,我们开发了预期最大化 HyGAMP-DCS(EM-HyGAMP-DCS)算法,以适应性地学习系统统计数据未知时的超参数。我们特别提议利用国家演变分析工具,以找到EM-HYGAMP-DCS的适当超分辨测法初始化。模拟结果显示我们提议的测算法活动能够大大改进测算的准确性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月15日
VIP会员
相关VIP内容
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员