Semi-decentralized federated learning blends the conventional device to-server (D2S) interaction structure of federated model training with localized device-to-device (D2D) communications. We study this architecture over practical edge networks with multiple D2D clusters modeled as time-varying and directed communication graphs. Our investigation results in an algorithm that controls the fundamental trade-off between (a) the rate of convergence of the model training process towards the global optimizer, and (b) the number of D2S transmissions required for global aggregation. Specifically, in our semi-decentralized methodology, D2D consensus updates are injected into the federated averaging framework based on column-stochastic weight matrices that encapsulate the connectivity within the clusters. To arrive at our algorithm, we show how the expected optimality gap in the current global model depends on the greatest two singular values of the weighted adjacency matrices (and hence on the densities) of the D2D clusters. We then derive tight bounds on these singular values in terms of the node degrees of the D2D clusters, and we use the resulting expressions to design a threshold on the number of clients required to participate in any given global aggregation round so as to ensure a desired convergence rate. Simulations performed on real-world datasets reveal that our connectivity-aware algorithm reduces the total communication cost required to reach a target accuracy significantly compared with baselines depending on the connectivity structure and the learning task.


翻译:半分散化的联合会式学习将常规设备与服务器(D2S)的互动结构混为一体。我们研究这个结构,将联邦模式培训的常规设备与服务器(D2S)互动结构与本地设备与设备与设备(D2D)通信混合。我们研究这个结构,在实用边缘网络中,有多种D2D集群,以时间变化和定向通信图模式建模。我们通过算法发现,当前全球模型的预期最佳差距取决于(a) 模型培训过程与全球优化的趋同率的趋同率,以及(b) 全球聚合所需的D2S传输量。具体地说,在我们半分散化方法中,D2D共识更新被注入基于囊括各集群内连接连接的分列随机重力矩阵的混合平均框架。为了达到我们的算法,我们展示了当前全球模型的预期最佳性差距取决于D2D集群加权相近度矩阵的最大两个奇特值(因此也取决于密度)。我们随后从这些单项值获得的D2D数据传输结构总连通性度度,我们利用所期望的连通性分类式结构的精确度结构,我们使用所完成的升级的客户的缩度,并使用所完成的模缩标值的模值,我们所完成的全球数据压值,我们所完成的模化的基值的基值的基值,我们用到所要求的基值的基值的基值,我们用的数据压式的基值,我们用的基值的基值,我们用的基值的基值的基值的基值的基值的基值的基值的基值的基值的基值的基值将降低了全球的基值。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
51+阅读 · 2020年12月14日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员