We develop a direct debiased machine learning framework comprising Neyman targeted estimation and generalized Riesz regression. Our framework unifies Riesz regression for automatic debiased machine learning, covariate balancing, targeted maximum likelihood estimation (TMLE), and density-ratio estimation. In many problems involving causal effects or structural models, the parameters of interest depend on regression functions. Plugging regression functions estimated by machine learning methods into the identifying equations can yield poor performance because of first-stage bias. To reduce such bias, debiased machine learning employs Neyman orthogonal estimating equations. Debiased machine learning typically requires estimation of the Riesz representer and the regression function. For this problem, we develop a direct debiased machine learning framework with an end-to-end algorithm. We formulate estimation of the nuisance parameters, the regression function and the Riesz representer, as minimizing the discrepancy between Neyman orthogonal scores computed with known and unknown nuisance parameters, which we refer to as Neyman targeted estimation. Neyman targeted estimation includes Riesz representer estimation, and we measure discrepancies using the Bregman divergence. The Bregman divergence encompasses various loss functions as special cases, where the squared loss yields Riesz regression and the Kullback-Leibler divergence yields entropy balancing. We refer to this Riesz representer estimation as generalized Riesz regression. Neyman targeted estimation also yields TMLE as a special case for regression function estimation. Furthermore, for specific pairs of models and Riesz representer estimation methods, we can automatically obtain the covariate balancing property without explicitly solving the covariate balancing objective.
翻译:我们开发了一个包含Neyman目标估计与广义Riesz回归的直接去偏机器学习框架。该框架统一了用于自动去偏机器学习的Riesz回归、协变量平衡、目标最大似然估计(TMLE)以及密度比估计。在涉及因果效应或结构模型的许多问题中,目标参数依赖于回归函数。将机器学习方法估计的回归函数直接代入识别方程可能因第一阶段偏差而导致性能不佳。为减少此类偏差,去偏机器学习采用Neyman正交估计方程。去偏机器学习通常需要估计Riesz表示子与回归函数。针对该问题,我们开发了具有端到端算法的直接去偏机器学习框架。我们将回归函数与Riesz表示子等冗余参数的估计问题,转化为最小化已知与未知冗余参数下Neyman正交得分之间的差异,称之为Neyman目标估计。Neyman目标估计包含Riesz表示子估计,我们使用Bregman散度度量差异。Bregman散度涵盖多种损失函数作为特例:平方损失对应Riesz回归,Kullback-Leibler散度对应熵平衡。我们将此类Riesz表示子估计称为广义Riesz回归。Neyman目标估计也以TMLE作为回归函数估计的特例。此外,对于特定模型与Riesz表示子估计方法的组合,我们无需显式求解协变量平衡目标即可自动获得协变量平衡性质。