Cross-entropy loss with softmax output is a standard choice to train neural network classifiers. We give a new view of neural network classifiers with softmax and cross-entropy as mutual information evaluators. We show that when the dataset is balanced, training a neural network with cross-entropy maximises the mutual information between inputs and labels through a variational form of mutual information. Thereby, we develop a new form of softmax that also converts a classifier to a mutual information evaluator when the dataset is imbalanced. Experimental results show that the new form leads to better classification accuracy, in particular for imbalanced datasets.
翻译:使用软负输出的交叉机体损失是培训神经网络分类师的标准选择。 我们以相互信息评估员的身份,对具有软负和交叉机体的神经网络分类师进行新的审视。 我们显示,当数据集平衡时,对具有交叉机体的神经网络进行培训,通过互换信息的形式,使输入和标签之间的相互信息最大化。 因此,我们开发了一种新的软算法,当数据集不平衡时,也将分类员转换为相互信息评估员。 实验结果显示,新形式提高了分类的准确性, 特别是不平衡的数据集。