Cross-entropy loss with softmax output is a standard choice to train neural network classifiers. We give a new view of neural network classifiers with softmax and cross-entropy as mutual information evaluators. We show that when the dataset is balanced, training a neural network with cross-entropy maximises the mutual information between inputs and labels through a variational form of mutual information. Thereby, we develop a new form of softmax that also converts a classifier to a mutual information evaluator when the dataset is imbalanced. Experimental results show that the new form leads to better classification accuracy, in particular for imbalanced datasets.


翻译:使用软负输出的交叉机体损失是培训神经网络分类师的标准选择。 我们以相互信息评估员的身份,对具有软负和交叉机体的神经网络分类师进行新的审视。 我们显示,当数据集平衡时,对具有交叉机体的神经网络进行培训,通过互换信息的形式,使输入和标签之间的相互信息最大化。 因此,我们开发了一种新的软算法,当数据集不平衡时,也将分类员转换为相互信息评估员。 实验结果显示,新形式提高了分类的准确性, 特别是不平衡的数据集。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
15+阅读 · 2021年5月21日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员