Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs. However, due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category, e.g., "man-eating-pizza, giraffe-eating-leaf", and the severe inter-class similarity between different classes, e.g., "man-holding-plate, man-eating-pizza", in model's latent space. The above challenges prevent current SGG methods from acquiring robust features for reliable relation prediction. In this paper, we claim that the predicate's category-inherent semantics can serve as class-wise prototypes in the semantic space for relieving the challenges. To the end, we propose the Prototype-based Embedding Network (PE-Net), which models entities/predicates with prototype-aligned compact and distinctive representations and thereby establishes matching between entity pairs and predicates in a common embedding space for relation recognition. Moreover, Prototype-guided Learning (PL) is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching caused by the predicate's semantic overlap. Extensive experiments demonstrate that our method gains superior relation recognition capability on SGG, achieving new state-of-the-art performances on both Visual Genome and Open Images datasets.
翻译:目前Scene Graphing (SGG) 方法探索背景信息,以预测实体对口之间的关系。然而,由于众多可能的主题对象组合的视觉外观不同,每个上游类别(例如“man-eating-pizza, giraffe-eate-leaf ”)内部阶级内部差异很大,而且不同类别(例如“man-desing-plate-eating-pizza ”)之间有着严重的阶级间相似性,例如,模型潜藏空间中的“man-pold-place,man-eat-eting-pizza ”。上述挑战使得当前SGG方法无法获得可靠关系预测的可靠特征。在本文中,我们声称,在“man-eating-inherent-inherent emany emistictications”中,“man-development-leal-leader reliversionalal legilation”中,我们提出了基于原型缩缩缩缩缩缩缩缩缩缩缩的模型实体的模型和缩略图(Prial-le-ladeal-lade-lade-lade-le-al-lade-lade-lade-lade) commal complation commact commact complation 和Speal complation commital) 正在被引入实体(PPLisality) 和Supal)的模型,我们编制新的缩缩缩缩缩缩缩缩缩略图,我们制的模型,我们编为为将用来进行成成的缩缩缩缩缩缩缩缩化的模型的模型的模型的模型的模型的模型,我们的模型的模型的模型的模型化的缩化的模型的缩缩缩化的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型,我们采用了的模型的模型的模型,我们采用了的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型</s>