Graph Attention Networks (GATs) have been intensively studied and widely used in graph data learning tasks. Existing GATs generally adopt the self-attention mechanism to conduct graph edge attention learning, requiring expensive computation. It is known that Spiking Neural Networks (SNNs) can perform inexpensive computation by transmitting the input signal data into discrete spike trains and can also return sparse outputs. Inspired by the merits of SNNs, in this work, we propose a novel Graph Spiking Attention Network (GSAT) for graph data representation and learning. In contrast to self-attention mechanism in existing GATs, the proposed GSAT adopts a SNN module architecture which is obvious energy-efficient. Moreover, GSAT can return sparse attention coefficients in natural and thus can perform feature aggregation on the selective neighbors which makes GSAT perform robustly w.r.t graph edge noises. Experimental results on several datasets demonstrate the effectiveness, energy efficiency and robustness of the proposed GSAT model.


翻译:在图表数据学习任务中,对图表关注网络(GATs)进行了深入研究并广泛使用。现有的GATs通常采用自我注意机制来进行图形边缘关注学习,这需要昂贵的计算。众所周知,Spiking神经网络(SNNS)可以通过将输入信号数据传送到离散的加注列中来进行廉价计算,还可以返回稀有的产出。在SNTs的优点的启发下,我们在这项工作中提议为图表数据显示和学习建立一个新型图形spiking关注网络(GSAT)。与现有的GATs的自我注意机制相比,拟议的GSAT采用一个明显具有能源效率的SNN模块结构。此外,GSAT还可以在自然中恢复稀少的注意系数,从而在选定的邻居上进行特征聚合,从而使GSAT公司能够强有力地运行W.r.t图形边缘噪音。几个数据集的实验结果显示了拟议GSAT模型的有效性、能效和稳健性。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
25+阅读 · 2021年4月2日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
21+阅读 · 2021年2月13日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员