Shape restriction, like monotonicity or convexity, imposed on a function of interest, such as a regression or density function, allows for its estimation without smoothness assumptions. The concept of $k$-monotonicity encompasses a family of shape restrictions, including decreasing and convex decreasing as special cases corresponding to $k=1$ and $k=2$. We consider Bayesian approaches to estimate a $k$-monotone density. By utilizing a kernel mixture representation and putting a Dirichlet process or a finite mixture prior on the mixing distribution, we show that the posterior contraction rate in the Hellinger distance is $(n/\log n)^{- k/(2k + 1)}$ for a $k$-monotone density, which is minimax optimal up to a polylogarithmic factor. When the true $k$-monotone density is a finite $J_0$-component mixture of the kernel, the contraction rate improves to the nearly parametric rate $\sqrt{(J_0 \log n)/n}$. Moreover, by putting a prior on $k$, we show that the same rates hold even when the best value of $k$ is unknown. A specific application in modeling the density of $p$-values in a large-scale multiple testing problem is considered. Simulation studies are conducted to evaluate the performance of the proposed method.
翻译:暂无翻译