This paper presents the application of triangle configuration B-splines (TCB-splines) for representing and analyzing the Kirchhoff-Love shell in the context of isogeometric analysis (IGA). The Kirchhoff-Love shell formulation requires global $C^1$-continuous basis functions. The nonuniform rational B-spline (NURBS)-based IGA has been extensively used for developing Kirchhoff-Love shell elements. However, shells with complex geometries inevitably need multiple patches and trimming techniques, where stitching patches with high continuity is a challenge. On the other hand, due to their unstructured nature, TCB-splines can accommodate general polygonal domains, have local refinement, and are flexible to model complex geometries with $C^1$ continuity, which naturally fit into the Kirchhoff-Love shell formulation with complex geometries. Therefore, we propose to use TCB-splines as basis functions for geometric representation and solution approximation. We apply our method to both linear and nonlinear benchmark shell problems, where the accuracy and robustness are validated. The applicability of the proposed approach to shell analysis is further exemplified by performing geometrically nonlinear Kirchhoff-Love shell simulations of a pipe junction and a front bumper represented by a single patch of TCB-splines.
翻译:本文介绍了在等几何分析(IGA)的背景下,使用三角形配置的B样条(TCB样条)来表示和分析基尔霍夫-洛夫壳的应用。Kirchhoff-Love壳层需要全局C1连续的基函数。非均匀有理B样条(NURBS)为基础的IGA已经被广泛用于开发Kirchhoff-Love壳层单元。然而,具有复杂几何形状的壳层不可避免地需要多个补丁和修剪技术,其中高连续性的拼接补丁是一个挑战。另一方面,由于它们的非结构化本质,TCB样条可以适应一般的多边形域,具有本地细化,并且灵活地模拟具有C1连续性的复杂几何形状,这与具有复杂几何形状的Kirchhoff-Love壳层配方自然契合。因此,我们建议使用TCB样条作为几何表示和解决方案近似的基函数。我们将我们的方法应用于线性和非线性基准壳问题,验证了精度和鲁棒性。通过对TCB样条的单个补丁进行几何非线性Kirchhoff-Love壳层模拟,进一步说明了所提出的方法对壳层分析的适用性。