The improvement in Information Technology has encouraged the use of Igbo in the creation of text such as resources and news articles online. Text similarity is of great importance in any text-based applications. This paper presents a comparative analysis of n-gram text representation on Igbo text document similarity. It adopted Euclidean similarity measure to determine the similarities between Igbo text documents represented with two word-based n-gram text representation (unigram and bigram) models. The evaluation of the similarity measure is based on the adopted text representation models. The model is designed with Object-Oriented Methodology and implemented with Python programming language with tools from Natural Language Toolkits (NLTK). The result shows that unigram represented text has highest distance values whereas bigram has the lowest corresponding distance values. The lower the distance value, the more similar the two documents and better the quality of the model when used for a task that requires similarity measure. The similarity of two documents increases as the distance value moves down to zero (0). Ideally, the result analyzed revealed that Igbo text document similarity measured on bigram represented text gives accurate similarity result. This will give better, effective and accurate result when used for tasks such as text classification, clustering and ranking on Igbo text.
翻译:信息技术的改进鼓励了Igbo在创建文本时使用Igbo,例如资源和在线新闻文章。文本相似性在任何基于文本的应用中都非常重要。本文对Igbo文本文档相似性对 n-gram 文本表示方式的对比分析,采用了Euclidean相似性测量,以确定Igbo文本文件与两个基于字的 ngram 文本表示方式(unigram 和 bigram ) 模型的相似性。对相似性测量方法的评估以所通过的文本代表模式为基础。该模型采用面向对象的方法设计,并用具有自然语言工具包工具的 Python 编程语言实施。结果显示, Unigram 代表文本的距离值最高,而大ram 则对应的距离值最低。 距离值越低, 两份文件越相似, 用于类似任务时模型的质量越好。 两种文件的相似性随着距离值降低到零(0), 理想是, 分析结果显示,在用自然语言工具包工具组工具组工具组(NLTK) 中测量的Igbo 文本相似性文件的类似性, 得出了准确性结果。