Infrared small object detection (ISOS) aims to segment small objects only covered with several pixels from clutter background in infrared images. It's of great challenge due to: 1) small objects lack of sufficient intensity, shape and texture information; 2) small objects are easily lost in the process where detection models, say deep neural networks, obtain high-level semantic features and image-level receptive fields through successive downsampling. This paper proposes a reliable detection model for ISOS, dubbed UCFNet, which can handle well the two issues. It builds upon central difference convolution (CDC) and fast Fourier convolution (FFC). On one hand, CDC can effectively guide the network to learn the contrast information between small objects and the background, as the contrast information is very essential in human visual system dealing with the ISOS task. On the other hand, FFC can gain image-level receptive fields and extract global information while preventing small objects from being overwhelmed.Experiments on several public datasets demonstrate that our method significantly outperforms the state-of-the-art ISOS models, and can provide useful guidelines for designing better ISOS deep models. Code are available at https://github.com/wcyjerry/BasicISOS.


翻译:红外小天体探测(ISOS) 旨在将小天体分割为红红外图像中来自杂乱背景的几像素所覆盖的小像素。 它具有巨大的挑战性,因为:(1) 小天体缺乏足够的强度、形状和质感信息;(2) 小天体在探测模型(比如深神经网络、获得高层次的语义特征和图像接收场)过程中很容易丢失。 另一方面, FFFC可以获得图像级的可接收字段和提取全球信息,同时防止小天体被挤压。 在几个公共数据集上所作的介绍表明,我们的方法大大超越了ISOS模型(CDC)和快速Fourier Convolution(FFC)的状态。 一方面, CDC可以有效地指导网络学习小天体和背景之间的对比信息,因为对比信息在与ISOS任务打交道的人类视觉系统中非常重要。 另一方面, FFCFC可以获取图像级可接收的可接收字段,并提取全球信息,同时防止小天体被压过。 在几个公共数据集上所作的介绍表明,我们的方法大大超越了State-art Stat-art ISOS ISOS) 模型, 并且可以提供更好的设计 ISO/ ISO/ basir s remabre slims slims moxy smalmal modemal modely smals smal smal dess 。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员