We set up a formal framework to characterize encompassing of nonparametric models through the L2 distance. We contrast it to previous literature on the comparison of nonparametric regression models. We then develop testing procedures for the encompassing hypothesis that are fully nonparametric. Our test statistics depend on kernel regression, raising the issue of bandwidth's choice. We investigate two alternative approaches to obtain a "small bias property" for our test statistics. We show the validity of a wild bootstrap method. We empirically study the use of a data-driven bandwidth and illustrate the attractive features of our tests for small and moderate samples.
翻译:我们建立了一个正式的框架,通过L2距离来确定非参数模型的特征。我们把它与先前关于非参数回归模型比较的文献进行了对比。然后,我们为包含的假设制定了完全非参数的测试程序。我们的测试统计数据依赖于内核回归,提出了带宽的选择问题。我们调查了两种替代方法,以获得测试统计数据的“小偏差属性”。我们显示了野靴陷阱方法的有效性。我们用经验研究数据驱动带宽的使用,并展示了我们测试中小样本的吸引力。