Real-time single-channel speech separation aims to unmix an audio stream captured from a single microphone that contains multiple people talking at once, environmental noise, and reverberation into multiple de-reverberated and noise-free speech tracks, each track containing only one talker. While large state-of-the-art DNNs can achieve excellent separation from anechoic mixtures of speech, the main challenge is to create compact and causal models that can separate reverberant mixtures at inference time. In this paper, we explore low-complexity, resource-efficient, causal DNN architectures for real-time separation of two or more simultaneous speakers. A cascade of three neural network modules are trained to sequentially perform noise-suppression, separation, and de-reverberation. For comparison, a larger end-to-end model is trained to output two anechoic speech signals directly from noisy reverberant speech mixtures. We propose an efficient single-decoder architecture with subtractive separation for real-time recursive speech separation for two or more speakers. Evaluation on real monophonic recordings of speech mixtures, according to speech separation measures like SI-SDR, perceptual measures like DNS-MOS, and a novel proposed channel separation metric, show that these compact causal models can separate speech mixtures with low latency, and perform on par with large offline state-of-the-art models like SepFormer.


翻译:实时单声道隔音, 目的是将单个麦克风中包含多个人同时交谈、 环境噪音和回响的音流混为一流, 每个音轨只包含一个音轨, 每个音轨只包含一个音轨。 虽然大型最先进的 DNN 能够实现极佳的分解, 与厌食式的言语混合体分离, 但主要的挑战在于创建紧凑和因果模式, 在引文时间可以分离反动混合体。 在本文中, 我们探索一个低兼容性、 资源效率、 因果关系 DNN 结构, 用于将两个或两个以上同时发言者实时分离。 一个由三个神经网络模块组成的连锁系统, 被训练为连续进行噪声压、 分离和反响调调调。 相比之下, 一个更大的端对端对端模式, 直接从噪音反动性言调混合体发出两种动音调信号。 我们建议一个高效的单调结构, 以减式分解方式将两个或两个以上同时发言者进行实时重复的语音分离。 三个神经网络模块模块模块的连动组合组合组合组合组合组合,, 以真实的S- real- decal- decal- decal- missal- disal roal rocal rocal mocal rocal rocal mocal modeal mocal modeal mode modeal motional motion mode modeal modeal modeal modeal modeal modeal modeal modeal model mode mode model la model la la la del demodeal demodeal demodeal demodeal deal deal demodeal deal deal deal deal deal demodeal deal deal deal demodeal demodeal demodeal demodel demodeal deal deal deal deal deal demodal deal deal deal deal deal deal deal deal demodal demodal demodal deal deal demodal demomental demo</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员