Quantum causality is an emerging field of study which has the potential to greatly advance our understanding of quantum systems. One of the most important problems in quantum causality is linked to this prominent aphorism that states correlation does not mean causation. A direct generalization of the existing causal inference techniques to the quantum domain is not possible due to superposition and entanglement. We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles. For this purpose, we leverage the concept of conditional density matrices to develop a scalable algorithmic approach for inferring causality in the presence of latent confounders (common causes) in quantum systems. We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links, where it is validated that the input before noise as a latent confounder is the cause of the noisy outputs. We also demonstrate that the proposed approach outperforms the results of classical causal inference even when the variables are classical by exploiting quantum dependence between variables through density matrices rather than joint probability distributions. Thus, the proposed approach unifies classical and quantum causal inference in a principled way. This successful inference on a synthetic quantum dataset can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
翻译:量子因果关系是一个新兴的研究领域,它有可能大大增进我们对量子系统的理解。量子因果关系的最重要问题之一与这种突出的辨别论有关,即指出相关性并不意味着因果关系。由于超位和纠缠,不可能直接将现有的因果推断技术归纳到量子领域。我们提出了一个新的理论框架,以利用热带原则将量子信息科学和因果推断结合起来。为此目的,我们利用有条件密度矩阵的概念来发展一种可缩放的算法方法,用以推断量子系统中潜在混淆者(共同原因)的存在中的因果关系。我们将我们提议的框架应用到一个实验性的、与相关的设想中,即确定量子噪音连接的信息发送者,由于叠加和缠绕,因此,不可能将现有因果推断技术直接归纳到量子领域。我们还表明,拟议的方法超越了典型因果关系推断的结果,即使变量是典型的,我们也可以通过利用密度矩阵的变量而不是联合概率分布来利用量子依赖性参数。因此,拟议采用的方法可以确定一个与实验性相关的情景,即查明在量子音联系上的信息发送机基础,从而确定一个可靠的基础。