Quantum machine learning is an emerging field at the intersection of machine learning and quantum computing. A central quantity for the theoretical foundation of quantum machine learning is the quantum cross entropy. In this paper, we present one operational interpretation of this quantity, that the quantum cross entropy is the compression rate for sub-optimal quantum source coding. To do so, we give a simple, universal quantum data compression protocol, which is developed based on quantum generalization of variable-length coding, as well as quantum strong typicality.
翻译:量子机器学习是机器学习和量子计算交汇处的一个新兴领域。量子机器学习理论基础的一个核心基础是量子跨星体。在本文中,我们对这一数量提出一个实用的解释,即量子跨星体是亚最佳量子源编码的压缩率。为了做到这一点,我们给出一个简单、通用量子数据压缩协议,该协议是根据可变长度编码的量子一般化以及量子强的典型而开发的。