We propose a new quantum state reconstruction method that combines ideas from compressed sensing, non-convex optimization, and acceleration methods. The algorithm, called Momentum-Inspired Factored Gradient Descent (\texttt{MiFGD}), extends the applicability of quantum tomography for larger systems. Despite being a non-convex method, \texttt{MiFGD} converges \emph{provably} to the true density matrix at a linear rate, in the absence of experimental and statistical noise, and under common assumptions. With this manuscript, we present the method, prove its convergence property and provide Frobenius norm bound guarantees with respect to the true density matrix. From a practical point of view, we benchmark the algorithm performance with respect to other existing methods, in both synthetic and real experiments performed on an IBM's quantum processing unit. We find that the proposed algorithm performs orders of magnitude faster than state of the art approaches, with the same or better accuracy. In both synthetic and real experiments, we observed accurate and robust reconstruction, despite experimental and statistical noise in the tomographic data. Finally, we provide a ready-to-use code for state tomography of multi-qubit systems.


翻译:我们提出一种新的量子状态重建方法,将来自压缩感测、非碳化优化和加速法的理念结合起来。 算法叫做“ 动力- 动力- 动力- 因素- 因素- 梯度源(\ textt{ MIFGD} ), 扩大了量子摄影对较大系统的适用性。 尽管算法是一种非碳化法, \ textt{ MIFGD} 却在没有实验和统计噪音的情况下, 在没有试验和统计噪音的情况下, 在共同假设的情况下, 将 \ emph{ 可能 集合到真正的密度矩阵。 我们用这个手稿来展示方法, 证明它的趋同属性, 并为真正的密度矩阵提供Frobenius 规范约束性保证。 我们从实际角度看, 在IBM的量子处理器上进行的合成和真实实验, 我们用其他现有方法来衡量算法的性能。 我们发现, 在合成和真实的实验中, 我们观察到了精确和稳健的重建, 尽管在图象数据中的实验和统计噪音中, 我们提供了一种多位的状态。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员