The problem of comparing the entire second order structure of two functional processes is considered and a $L^2$-type statistic for testing equality of the corresponding spectral density operators is investigated. The test statistic evaluates, over all frequencies, the Hilbert-Schmidt distance between the two estimated spectral density operators. Under certain assumptions, the limiting distribution under the null hypothesis is derived. A novel frequency domain bootstrap method is introduced, which leads to a more accurate approximation of the distribution of the test statistic under the null than the large sample Gaussian approximation derived. Under quite general conditions, asymptotic validity of the bootstrap procedure is established for estimating the distribution of the test statistic under the null. Furthermore, consistency of the bootstrap-based test under the alternative is proved. Numerical simulations show that, even for small samples, the bootstrap-based test has a very good size and power behavior. An application to a bivariate real-life functional time series illustrates the methodology proposed.


翻译:将两个功能过程的整个第二顺序结构进行比较的问题得到考虑,并研究用于测试相应光谱密度操作员平等情况的2美元类型的统计。测试统计数据对所有频率都进行了评估。测试统计数据评估了两个估计光谱密度操作员之间的Hilbert-Schmidt距离。根据某些假设,得出了无效假设下的限制分布。引入了一种新的频率域诱导方法,导致比大样本Gaussian近似值更准确地接近于无效情况下的测试统计数据分布。在相当一般的条件下,为估计无效下测试统计数据的分布确定了靴套程序的无症状有效性。此外,还证明了在替代情况下以靴套为基础的测试的一致性。数字模拟表明,即使对小样本而言,以靴套为基础的测试也具有非常好的规模和力量行为。对双轨实际功能时间序列的应用说明了所建议的方法。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
七月在线实验室
11+阅读 · 2018年7月18日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
一文读懂目标检测:R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SSD
七月在线实验室
11+阅读 · 2018年7月18日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员