The complex scaling/perfectly matched layer method is a widely spread technique to simulate wave propagation problems in open domains. The method is very popular, because its implementation is very easy and does not require the knowledge of a fundamental solution. However, for anisotropic media the method may yield an unphysical radiation condition and lead to erroneous and unstable results. In this article we argue that a radial scaling (opposed to a cartesian scaling) does not suffer from this drawback and produces the desired radiation condition. This result is of great importance as it rehabilitates the application of the complex scaling method for anisotropic media. To present further details we consider the radial complex scaling method for scalar anisotropic resonance problems. We prove that the associated operator is Fredholm and show the convergence of approximations generated by simulateneous domain truncation and finite element discretization. We present computational studies to undergird our theoretical results.
翻译:复杂缩放/ 完美匹配的层层方法是一种在开放域模拟波波传播问题的广泛传播技术。 这种方法非常流行, 因为它的实施非常容易, 不需要基本解决方案的知识。 但是, 对于厌食性媒体来说, 这种方法可能会产生一种无形的辐射状况, 并导致错误和不稳定的结果。 在本篇文章中, 我们争辩说, 辐射缩放( 相对于软木机的缩放) 并不受到这种缺陷的影响, 并产生理想的辐射条件 。 这个结果非常重要, 因为它恢复了对厌食媒体应用复杂的缩放方法 。 为了进一步提供细节, 我们考虑对卡莱亚色相共振问题采用辐射复杂缩放法 。 我们证明相关操作者是 Fredholm, 并显示模拟域脱轨和有限元素分解产生的近光的趋同。 我们提出计算研究, 以掩盖我们的理论结果 。