In this article, we introduce the BNPqte R package which implements the Bayesian nonparametric approach of Xu, Daniels and Winterstein (2018) for estimating quantile treatment effects in observational studies. This approach provides flexible modeling of the distributions of potential outcomes, so it is capable of capturing a variety of underlying relationships among the outcomes, treatments and confounders and estimating multiple quantile treatment effects simultaneously. Specifically, this approach uses a Bayesian additive regression trees (BART) model to estimate the propensity score and a Dirichlet process mixture (DPM) of multivariate normals model to estimate the conditional distribution of the potential outcome given the estimated propensity score. The BNPqte R package provides a fast implementation for this approach by designing efficient R functions for the DPM of multivariate normals model in joint and conditional density estimation. These R functions largely improve the efficiency of the DPM model in density estimation, compared to the popular DPpackage. BART-related R functions in the BNPqte R package are inherited from the BART R package with two modifications on variable importance and split probability. To maximize computational efficiency, the actual sampling and computation for each model are carried out in C++ code. The Armadillo C++ library is also used for fast linear algebra calculations.
翻译:在本篇文章中,我们引入了BNPqte R 包件,用于在观测研究中估算Xu、Daniels和Winterstein(2018年)的巴伊西亚非参数性非参数处理法,用于估算Xu、Daniels和Winterstein(2018年)的量化处理效果;该包件为潜在结果的分布提供了灵活的模型,因此能够同时捕捉结果、治疗和混杂者之间的各种基本关系,并估算多重量化处理效果;具体地说,该包件使用巴伊西亚添加性回归树模型来估计多变式正常模式的适应性分数和Drichlet进程混合物(DPM),以估计根据估计的适应性分数估计潜在结果的有条件分布;BNPqte R 包件为这一方法提供了快速实施模式的模型,通过联合和有条件密度估计的多变式正常模型模型设计各种R函数。这些R函数与流行式DPpackage相比,大大提高了DPM模型在密度估计方面的效率;BART-R 与R RET相关的R 包件功能是从BRT R 包中继承的,对可变式R 样重要性进行两次修改,并分计算。