Signaling game problems investigate communication scenarios where encoder(s) and decoder(s) have misaligned objectives due to the fact that they either employ different cost functions or have inconsistent priors. This problem has been studied in the literature for scalar sources under various setups. In this paper, we consider multi-dimensional sources under quadratic criteria in the presence of a bias leading to a mismatch in the criteria, where we show that the generalization from the scalar setup is more than technical. We show that the equilibrium solutions lead to structural richness due to the subtle geometric analysis the problem entails, with consequences in both system design, presence of linear equilibria, and an information theoretic problem formulation. We first provide a set of geometry conditions that needs to be satisfied in equilibrium considering any multi-dimensional source. Then, we consider independent and identically distributed sources and characterize necessary and sufficient conditions under which an informative linear equilibrium exists. These conditions involve the bias vector that leads to misaligned costs. Depending on certain conditions related to the bias vector, the existence of linear equilibria requires sources with a Gaussian or a symmetric density. Moreover, in the case of Gaussian sources, our results have a rate-distortion theoretic implication that achievable rates and distortions in the considered game theoretic setup can be obtained from its team theoretic counterpart.


翻译:信号游戏问题调查了由于编码器和解码器使用不同的成本功能或前后前后不一致而导致目标不匹配的通信情况。 这个问题已在各种设置下用于卡路里源的文献中研究过。 在本文中,我们考虑在四维标准下的多维源,但有偏差导致标准不匹配,我们显示,从缩略图设置中的一般化不仅仅是技术性的。我们表明,平衡解决方案导致结构上的丰富,因为对问题进行微妙的几何分析,在系统设计、线性平衡存在和信息性理论问题配制方面产生了后果。 我们首先提供了一系列在平衡中需要满足的几维条件,同时考虑到任何多维来源。 然后,我们考虑独立和相同的分布源,并描述在必要和充分的条件下存在信息性线性平衡。 这些条件涉及导致偏差成本的偏差矢量。 根据与偏差矢量相关的某些条件,线性松动的存在要求在系统设计、线性平衡存在的后果, 线性平衡性平衡和信息论问题的配对等值配值配值配值公式的源, 。 高正比值的定率率率是高正比值的, 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月19日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
76+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员