Control charts are often used to monitor the quality characteristics of a process over time to ensure undesirable behavior is quickly detected. The escalating complexity of processes we wish to monitor spurs the need for more flexible control charts such as those used in profile monitoring. Additionally, designing a control chart that has an acceptable false alarm rate for a practitioner is a common challenge. Alarm fatigue can occur if the sampling rate is high (say, once a millisecond) and the control chart is calibrated to an average in-control run length ($ARL_0$) of 200 or 370 which is often done in the literature. As alarm fatigue may not just be annoyance but result in detrimental effects to the quality of the product, control chart designers should seek to minimize the false alarm rate. Unfortunately, reducing the false alarm rate typically comes at the cost of detection delay or average out-of-control run length ($ARL_1$). Motivated by recent work on eigenvector perturbation theory, we develop a computationally fast control chart called the Eigenvector Perturbation Control Chart for nonparametric profile monitoring. The control chart monitors the $l_2$ perturbation of the leading eigenvector of a correlation matrix and requires only a sample of known in-control profiles to determine control limits. Through a simulation study we demonstrate that it is able to outperform its competition by achieving an $ARL_1$ close to or equal to 1 even when the control limits result in a large $ARL_0$ on the order of $10^6$. Additionally, non-zero false alarm rates with a change point after $10^4$ in-control observations were only observed in scenarios that are either pathological or truly difficult for a correlation based monitoring scheme.


翻译:控制图表往往用来监测一个过程的质量特性,以确保不受欢迎的行为能很快被检测出来。我们希望监测的过程的复杂性不断提高,这促使人们需要更灵活的控制图表,例如用于剖析监测的图表。此外,设计一个对执业者具有可接受的假警报率的控制图表是一个常见的挑战。如果取样率高(例如,一毫秒后),控制图表被校准为平均控制运行长度(ARL_0美元)200或370美元,文献中经常这样做。由于警报疲劳可能不只是令人不快,而且会对产品的质量造成有害影响,因此,控制图表设计者应该设法尽量减少错误的警报率。不幸的是,降低错误的警报率通常会以检测延迟或平均控制过长(ARL_1美元)为代价。由于最近关于静脉冲过敏性过敏理论的工作,我们制作了一个计算速度快速控制图表,称为Eigenveictor Perbroducation orgation orget $0, 用于非参数监测。在精确的观测点上, $__2的精确的温度比,我们只能通过模拟测算中测算中测算到一个直控图。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
Perturbation theory of transfer function matrices
Arxiv
0+阅读 · 2022年7月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员