Graphic design is ubiquitous in people's daily lives. For graphic design, the most time-consuming task is laying out various components in the interface. Repetitive manual layout design will waste a lot of time for professional graphic designers. Existing templates are usually rudimentary and not suitable for most designs, reducing efficiency and limiting creativity. This paper implemented the Transformer model and conditional variational autoencoder (CVAE) to the graphic design layout generation task. It proposed an end-to-end graphic design layout generation model named LayoutT-CVAE. We also proposed element disentanglement and feature-based disentanglement strategies and introduce new graphic design principles and similarity metrics into the model, which significantly increased the controllability and interpretability of the deep model. Compared with the existing state-of-art models, the layout generated by ours performs better on many metrics.
翻译:图形设计在人们日常生活中是无处不在的。 对于图形设计, 最耗时的任务就是在界面中列出各种组成部分。 重复使用手工布局设计会浪费专业图形设计师大量的时间。 现有的模板通常不成熟, 通常不适合大多数设计, 降低效率和限制创造性。 本文将变形器模型和有条件的变异自动编码器( CVAE) 应用到图形设计布局生成任务中。 它建议了一个端到端的图形设计布局生成模型, 名为“ 布局T- CVAE ” 。 我们还建议了元素分离和基于地貌的分解策略, 并在模型中引入新的图形设计原理和相似度量度, 这大大提高了深层模型的可控性和可解释性。 与现有最先进的模型相比, 我们的布局在许多度度上表现更好。