We study linear equations in combinatorial Laplacians of $k$-dimensional simplicial complexes ($k$-complexes), a natural generalization of graph Laplacians. Combinatorial Laplacians play a crucial role in homology and are a central tool in topology. Beyond this, they have various applications in data analysis and physical modeling problems. It is known that nearly-linear time solvers exist for graph Laplacians. However, nearly-linear time solvers for combinatorial Laplacians are only known for restricted classes of complexes. This paper shows that linear equations in combinatorial Laplacians of 2-complexes are as hard to solve as general linear equations. More precisely, for any constant $c \geq 1$, if we can solve linear equations in combinatorial Laplacians of 2-complexes up to high accuracy in time $\tilde{O}((\# \text{ of nonzero coefficients})^c)$, then we can solve general linear equations with polynomially bounded integer coefficients and condition numbers up to high accuracy in time $\tilde{O}((\# \text{ of nonzero coefficients})^c)$. We prove this by a nearly-linear time reduction from general linear equations to combinatorial Laplacians of 2-complexes. Our reduction preserves the sparsity of the problem instances up to poly-logarithmic factors.
翻译:以 $k$- simplicacians 的 组合式 Laplacians 进行线性方程式研究。 组合式 Laplacians 在同质中起着关键作用, 并且是表层学中的核心工具。 除此之外, 它们在数据分析和物理建模问题上有各种应用。 众所周知, 图形 Laplacians 存在近线性时间解析器。 但是, 组合式 Laplacian 的近线性时间解析器只为限制的复杂类所知道。 本文显示, 组合式 Laplacies 中的线性方程式与普通线性方程式一样难以解析。 对于任何恒定的 $c\ geq 1, 如果我们能够解析2 的组合式的线性方程式达到高精度 $\ { (\\ textlex), 然后我们可以用 美元- cloialal 的直线性方程式解析度方程式, 几乎是Onomdeal- calalalal orizal=x 。