The proper conflict-free chromatic number, $\chi_{pcf}(G)$, of a graph $G$ is the least $k$ such that $G$ has a proper $k$-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chromatic number, $\chi_{o}(G)$, of $G$ is the least $k$ such that $G$ has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We say that a graph class $\mathcal{G}$ is $\chi_{pcf}$-bounded ($\chi_{o}$-bounded) if there is a function $f$ such that $\chi_{pcf}(G) \leq f(\chi(G))$ ($\chi_{o}(G) \leq f(\chi(G))$) for every $G \in \mathcal{G}$. Caro et al. (2022) asked for classes that are linearly $\chi_{pcf}$-bounded ($\chi_{pcf}$-bounded), and as a starting point, they showed that every claw-free graph $G$ satisfies $\chi_{pcf}(G) \le 2\Delta(G)+1$, which implies $\chi_{pcf}(G) \le 4\chi(G)+1$. In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph $G$ satisfies $\chi_{pcf}(G) \le \Delta(G)+6$, and even $\chi_{pcf}(G) \le \Delta(G)+4$ if it is a quasi-line graph. These results also give evidence for a conjecture by Caro et al. Moreover, we show that convex-round graphs and permutation graphs are linearly $\chi_{pcf}$-bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly $\chi_{pcf}$-bounded to deciding if the bipartite graphs in the class are $\chi_{pcf}$-bounded by an absolute constant. This lemma complements a theorem of Liu (2022) and motivates us to study boundedness in bipartite graphs. In particular, we show that biconvex bipartite graphs are $\chi_{pcf}$-bounded while convex bipartite graphs are not even $\chi_o$-bounded, and exhibit a class of bipartite circle graphs that is linearly $\chi_o$-bounded but not $\chi_{pcf}$-bounded.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
142+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 3月22日
Arxiv
0+阅读 · 3月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员