Generation-based methods have captured most of the recent attention in Zero-Shot Learning research. In this paper, we attempt to deconstruct the generator-classifier framework to guide its improvement and extension. We begin by analyzing the generator-learned instance-level distribution by alternating it with a Gaussian distribution. Then we reveal the roles of the class-level distribution and the instance-level distribution learned by the generator in classifier training by decomposing the classifier gradients. We finally conclude with the guidelines for improving the generator-classifier framework from the deconstruction of the generator and the classifier, i.e., (i) The key for the ZSL generator is attribute generalization; and (ii) classifier learning emphasizes mitigating the impact of pseudo unseen samples on decision boundaries between seen classes during training, and reducing the seen-unseen bias. We propose a simple method based on the guidelines. Without complex designs, the proposed method outperforms the state of the art on four public ZSL datasets, which demonstrates the validity of the proposed guidelines. The proposed method is still effective when replacing the generative model with an attribute-to-visual center single mapping model, demonstrating its strong transferability. Codes will be public upon acceptance.
翻译:以一代为基础的方法在零热学习研究中吸引了最近大部分关注。 在本文件中,我们试图解构发电机分类框架,以指导其改进和扩展。我们首先分析发电机学习的试样分布,将它与高山分布相交。然后我们揭示阶级分布的作用,以及发电机在分类培训中通过分解分类梯度而学到的试样分布。我们最后以改进发电机分类框架的指导方针结束,从发电机和分类器的拆解中改进发电机分类框架,即(一) ZSL 生成器的关键是属性的概括化;以及(二) 分类学习强调减轻假的无形样本对培训期间所见班级之间决策界限的影响,并减少所见的偏差。我们根据准则提出了一个简单的方法。在没有复杂的设计的情况下,拟议的方法超越了四个公共ZSL数据集的艺术状态,这显示了拟议指南的有效性。在用一个可靠的模型来取代公共可接受性中心时,拟议的方法仍然有效,将展示其强大的模型将展示成象性。