The stance detection task aims to classify the stance toward given documents and topics. Since the topics can be implicit in documents and unseen in training data for zero-shot settings, we propose to boost the transferability of the stance detection model by using sentiment and commonsense knowledge, which are seldom considered in previous studies. Our model includes a graph autoencoder module to obtain commonsense knowledge and a stance detection module with sentiment and commonsense. Experimental results show that our model outperforms the state-of-the-art methods on the zero-shot and few-shot benchmark dataset--VAST. Meanwhile, ablation studies prove the significance of each module in our model. Analysis of the relations between sentiment, common sense, and stance indicates the effectiveness of sentiment and common sense.
翻译:定位探测任务旨在对特定文件和专题的定位进行分类,由于这些专题可能隐含在文档中,而零点设定培训数据中却隐含在无形中,我们提议通过使用情感和常识知识促进姿态探测模型的可转移性,而以前的研究很少考虑到这些常识。我们的模型包括一个图形自动编码模块,以获取常识知识,以及一个带有情绪和常识的姿态探测模块。实验结果显示,我们的模型在零点和几分点基准数据集方面优于最先进的方法。同时,通缩研究证明了我们模型中每个模块的重要性。对情绪、常识和姿态之间关系的分析表明情感和常识的效果。