While large language models (LLMs) show considerable promise across various fields, they have notable limitations in handling multi-document question answering (Multi-doc QA) tasks. The first challenge is long-range dependency modeling, where LLMs struggle to focus on key information in long texts, which weakens important semantic connections. Second, most LLMs suffer from the ''lost-in-the-middle'' issue, where they have difficulty processing information in the middle of long inputs. Current solutions either truncate global dependencies or demand costly finetuning, ultimately lacking a universal and simple solution for these challenges. To resolve these limitations, we propose Dual-Stage Adaptive Sharpening (DSAS) containing two modules. (i) The Contextual Gate Weighting (CGW) module alleviates ''lost-in-the-middle'' by assessing paragraph relevance through layer-wise attention tracking and position-aware weighting. (ii) The Reciprocal Attention Suppression (RAS) module enhances focus on critical paragraphs by suppressing information exchange between key and irrelevant texts, thus mitigating the limitations in long-range dependency modeling. Notably, DSAS functions as a plug-and-play solution requiring no architectural modifications or extra training parameters. Extensive experiments on four benchmarks demonstrate DSAS's efficacy across mainstream LLMs (Llama, Qwen, Mistral, and Deepseek), with an average F1-score improvement of 4.2% in Multi-doc QA tasks on Llama-3.1-8B-Instruct and Qwen2.5-14B-Instruct. Ablation studies confirm the essential contributions of both the CGW and RAS modules. In addition, detailed discussions in the Appendix further validate the robustness and scalability of DSAS.


翻译:尽管大型语言模型(LLMs)在各个领域展现出巨大潜力,但在处理多文档问答(Multi-doc QA)任务时仍存在显著局限。首要挑战是长距离依赖建模,LLMs难以在长文本中聚焦关键信息,这削弱了重要的语义关联。其次,大多数LLMs受困于"中间信息丢失"问题,难以有效处理长输入中间部分的信息。现有解决方案要么截断全局依赖,要么需要昂贵的微调,最终缺乏应对这些挑战的通用且简洁的方案。为突破这些限制,我们提出包含两个模块的双阶段自适应锐化(DSAS)框架。(i)上下文门控加权(CGW)模块通过逐层注意力追踪与位置感知加权来评估段落相关性,从而缓解"中间信息丢失"问题。(ii)互斥注意力抑制(RAS)模块通过抑制关键文本与无关文本间的信息交互,增强对关键段落的聚焦,从而改善长距离依赖建模的局限。值得注意的是,DSAS作为即插即用方案,无需修改模型架构或增加训练参数。在四个基准测试上的大量实验表明,DSAS在主流LLMs(Llama、Qwen、Mistral和Deepseek)上均表现优异,其中Llama-3.1-8B-Instruct和Qwen2.5-14B-Instruct在Multi-doc QA任务中的平均F1分数提升达4.2%。消融研究证实了CGW与RAS模块的核心贡献。此外,附录中的详细讨论进一步验证了DSAS的鲁棒性与可扩展性。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员