To address privacy concerns and reduce network latency, there has been a recent trend of compressing cumbersome recommendation models trained on the cloud and deploying compact recommender models to resource-limited devices for real-time recommendation. Existing solutions generally overlook device heterogeneity and user heterogeneity. They either require all devices to share the same compressed model or the devices with the same resource budget to share the same model. However, even users with the same devices may have different preferences. In addition, they assume the available resources (e.g., memory) for the recommender on a device are constant, which is not reflective of reality. In light of device and user heterogeneities as well as dynamic resource constraints, this paper proposes a Personalized Elastic Embedding Learning framework (PEEL) for on-device recommendation, which generates personalized embeddings for devices with various memory budgets in once-for-all manner, efficiently adapting to new or dynamic budgets, and effectively addressing user preference diversity by assigning personalized embeddings for different groups of users. Specifically, it pretrains using user-item interaction instances to generate the global embedding table and cluster users into groups. Then, it refines the embedding tables with local interaction instances within each group. Personalized elastic embedding is generated from the group-wise embedding blocks and their weights that indicate the contribution of each embedding block to the local recommendation performance. PEEL efficiently generates personalized elastic embeddings by selecting embedding blocks with the largest weights, making it adaptable to dynamic memory budgets. Extensive experiments are conducted on two public datasets, and the results show that PEEL yields superior performance on devices with heterogeneous and dynamic memory budgets.
翻译:暂无翻译