Reconfigurable intelligent surface (RIS) is considered as one of the key technologies for future 6G communications. To fully unleash the performance of RIS, accurate channel state information (CSI) is crucial. Beam training is widely utilized to acquire the CSI. However, before aligning the beam correctly to establish stable connections, the signal-to-noise ratio (SNR) at UE is inevitably low, which reduces the beam training accuracy. To deal with this problem, we exploit the coded beam training framework for RIS systems, which leverages the error correction capability of channel coding to improve the beam training accuracy under low SNR. Specifically, we first extend the coded beam training framework to RIS systems by decoupling the base station-RIS channel and the RIS-user channel. For this framework, codewords that accurately steer to multiple angles is essential for fully unleashing the error correction capability. In order to realize effective codeword design in RIS systems, we then propose a new codeword design criterion, based on which we propose a relaxed Gerchberg-Saxton (GS) based codeword design scheme by considering the constant modulus constraints of RIS elements. In addition, considering the two dimensional structure of RIS, we further propose a dimension reduced encoder design scheme, which can not only guarentee a better beam shape, but also enable a stronger error correction capability. Simulation results reveal that the proposed scheme can realize effective and accurate beam training in low SNR scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2023年10月21日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
27+阅读 · 2021年11月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
15+阅读 · 2023年10月21日
Arxiv
11+阅读 · 2023年3月8日
Arxiv
15+阅读 · 2022年5月14日
Arxiv
27+阅读 · 2021年11月11日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员