There has been a resurgence of interest in the asymptotic normality of incomplete U-statistics that only sum over roughly as many kernel evaluations as there are data samples, due to its computational efficiency and usefulness in quantifying the uncertainty for ensemble-based predictions. In this paper, we focus on the normal convergence of one such construction, the incomplete U-statistic with Bernoulli sampling, based on a raw sample of size $n$ and a computational budget $N$ in the same order as $n$. Under a minimalistic third moment assumption on the kernel, we offer an accompanying Berry-Esseen bound of the natural rate $1/\sqrt{\min(N, n)}$ that characterizes the normal approximating accuracy involved. Our key techniques include Stein's method specialized for the so-called Studentized nonlinear statistics, and an exponential lower tail bound for non-negative kernel U-statistics.
翻译:暂无翻译